Computing Polynomial Segmentation through Radial Surface Representation
نویسندگان
چکیده
The Visual Information Retrieval (VIR) area requires robust implementations achieved trough mathematical representations for images or data sets. The implementation of a mathematical modeling goes from the corpus image selection, an appropriate descriptor method, a segmentation approach and the similarity metric implementation whose are treated as VIR elements. The goal of this research is to found an appropriate modeling to explain how its items can be represented to achieve a better performance in VIR implementations. A direct method is tested with a subspace arrangement approach. The General Principal Component Analysis (GPCA) is modified inside its segmentation process. Initially, a corpus data sample is tested, the descriptor of RGB colors is implemented to obtain a three dimensional description of image data. Then a selection of radial basis function is achieved to improve the similarity metric implemented. It is concluded that a better performance can be achieved applying powerful extraction methods in visual image retrieval (VIR) designs based in a mathematical formulation. The results lead to design VIR systems with high level of performance based in radial basis functions and polynomial segmentations for handling data sets.
منابع مشابه
Optimal Graph Search Segmentation Using Arc-Weighted Graph for Simultaneous Surface Detection of Bladder and Prostate
We present a novel method for globally optimal surface segmentation of multiple mutually interacting objects, incorporating both edge and shape knowledge in a 3-D graph-theoretic approach. Hard surface interacting constraints are enforced in the interacting regions, preserving the geometric relationship of those partially interacting surfaces. The soft smoothness a priori shape compliance is in...
متن کاملThe Layered Net Surface Problems in Discrete Geometry and Medical Image Segmentation
Efficient detection of multiple inter-related surfaces representing the boundaries of objects of interest in d-D images (d >/= 3) is important and remains challenging in many medical image analysis applications. In this paper, we study several layered net surface (LNS) problems captured by an interesting type of geometric graphs called ordered multi-column graphs in the d-D discrete space (d >/...
متن کامل3D Model Segmentation and Representation with Implicit Polynomials
SUMMARY When large-scale and complex 3D objects are obtained by range finders, it is often necessary to represent them by algebraic surfaces for such purposes as data compression, multi-resolution, noise elimination, and 3D recognition. Representing the 3D data with algebraic surfaces of an implicit polynomial (IP) has proved to offer the advantages that IP representation is capable of encoding...
متن کاملA New IRIS Segmentation Method Based on Sparse Representation
Iris recognition is one of the most reliable methods for identification. In general, itconsists of image acquisition, iris segmentation, feature extraction and matching. Among them, iris segmentation has an important role on the performance of any iris recognition system. Eyes nonlinear movement, occlusion, and specular reflection are main challenges for any iris segmentation method. In thi...
متن کاملInlier Estimation for Moving Camera Motion Segmentation
In moving camera videos, motion segmentation is often performed on the optical flow. However, there exist two challenges: 1) Camera motions lead to three primary flows in optical flow: translation, rotation, and radial flow. They are not all solved in existing frameworks under Cartesian coordinate system; 2) A moving camera introduces 3D motion, the depth discontinuities cause the motion discon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Polibits
دوره 49 شماره
صفحات -
تاریخ انتشار 2014